Small generators of number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number Fields without Small Generators

Let D > 1 be an integer, and let b = b(D) > 1 be its smallest divisor. We show that there are infinitely many number fields of degree D whose primitive elements all have relatively large height in terms of b, D and the discriminant of the number field. This provides a negative answer to a questions of W. Ruppert from 1998 in the case when D is composite. Conditional on a very weak form of a fol...

متن کامل

Small generators of function fields

Let K/k be a finite extension of a global field. Such an extension can be generated over k by a single element. The aim of this article is to prove the existence of a ”small” generator in the function field case. This answers the function field version of a question of Ruppert on small generators of number fields.

متن کامل

A note on generators of number fields

We establish upper bounds for the smallest height of a generator of a number field k over the rational field Q. Our first bound applies to all number fields k having at least one real embedding. We also give a second conditional result for all number fields k such that the Dedekind zeta-function associated to the Galois closure of k/Q satisfies GRH. This provides a partial answer to a question ...

متن کامل

Small generators of function fields par

Let K/k be a finite extension of a global field. Such an extension can be generated over k by a single element. The aim of this article is to prove the existence of a ”small“ generator in the function field case. This answers the function field version of a question of Ruppert on small generators of number fields.

متن کامل

Period Distribution of Inversive Pseudorandom Number Generators Over Finite Fields

In this paper, we focus on analyzing the period distribution of the inversive pseudorandom number generators (IPRNGs) over finite field (ZN ,+,×), where N > 3 is a prime. The sequences generated by the IPRNGs are transformed to 2-dimensional linear feedback shift register (LFSR) sequences. By employing the generating function method and the finite field theory, the period distribution is obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: manuscripta mathematica

سال: 1998

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s002290050051